网络图片加载工具

《Android-Universal-Image-Loader》

1、 数据结构分析
/** Stores not strong references to objects */
private final Map<String, Reference<Bitmap>> softMap = Collections.synchronizedMap(new HashMap<String, Reference<Bitmap>>());

private final List<Bitmap> hardCache = Collections.synchronizedList(new LinkedList<Bitmap>());

LinkedHashMap中的get()方法不仅返回所匹配的值,并且在返回前还会将所匹配的key对应的entry调整在列表中的顺序(LinkedHashMap使用双链表来保存数据),让它处于列表的最后。当然,这种情况必须是在LinkedHashMap中accessOrder==true的情况下才生效的,反之就是get()方法不会改变被匹配的key对应的entry在列表中的位置

LinkedHashMap:

根据链表中元素的顺序可以分为:按插入顺序的链表,和按访问顺序(调用get方法)的链表。  

默认是按插入顺序排序,如果指定按访问顺序排序,那么调用get方法后,会将这次访问的元素移至链表尾部,不断访问可以形成按访问顺序排序的链表。  可以重写removeEldestEntry方法返回true值指定插入元素时移除最老的元素。 
2、 缓存策略分析

UIL中的内存缓存策略

1. 只使用的是强引用缓存 

LruMemoryCache(这个类就是这个开源框架默认的内存缓存类,缓存的是bitmap的强引用,下面我会从源码上面分析这个类)
 2.使用强引用和弱引用相结合的缓存有

 UsingFreqLimitedMemoryCache(如果缓存的图片总量超过限定值,先删除使用频率最小的bitmap)

LRULimitedMemoryCache(这个也是使用的lru算法,和LruMemoryCache不同的是,他缓存的是bitmap的弱引用)
FIFOLimitedMemoryCache(先进先出的缓存策略,当超过设定值,先删除最先加入缓存的bitmap)
LargestLimitedMemoryCache(当超过缓存限定值,先删除最大的bitmap对象)
LimitedAgeMemoryCache(当 bitmap加入缓存中的时间超过我们设定的值,将其删除)
 3.只使用弱引用缓存

 WeakMemoryCache(这个类缓存bitmap的总大小没有限制,唯一不足的地方就是不稳定,缓存的图片容易被回收掉)

我们直接选择UIL中的默认配置缓存策略进行分析。

ImageLoaderConfiguration config = ImageLoaderConfiguration.createDefault(context);
ImageLoaderConfiguration.createDefault(…)这个方法最后是调用Builder.build()方法创建默认的配置参数的。默认的内存缓存实现是LruMemoryCache,磁盘缓存是UnlimitedDiscCache。

业务如下

① UI:请求数据,使用唯一的Key值索引Memory Cache中的Bitmap。

② 内存缓存:缓存搜索,如果能找到Key值对应的Bitmap,则返回数据。否则执行第三步。

③ 硬盘存储:使用唯一Key值对应的文件名,检索SDCard上的文件。

④ 如果有对应文件,使用BitmapFactory.decode*方法,解码Bitmap并返回数据,同时将数据写入缓存。如果没有对应文件,执行第五步。

⑤ 下载图片:启动异步线程,从数据源下载数据(Web)。

⑥ 若下载成功,将数据同时写入硬盘和缓存,并将Bitmap显示在UI中。
3、 设计模式应用分析
  1. 单例模式的应用在
  2. builder模式
4、 线程池

线程池能够带来三个好处:

第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗
第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行
第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控

创建一个ThreadPoolExecutor需要的参数:

corePoolSize(线程池的基本大小):当提交一个任务到线程池时,线程池会创建一个线程来执行任务,即使其他空闲的基本线程能够执行新任务也会创建线程,等到需要执行的任务数大于线程池基本大小时就不再创建。如果调用了线程池的prestartAllCoreThreads方法,线程池会提前创建并启动所有基本线程。

runnableTaskQueue(任务队列):用于保存等待执行的任务的阻塞队列。 可以选择以下几个阻塞队列。

ArrayBlockingQueue:是一个基于数组结构的有界阻塞队列,此队列按 FIFO(先进先出)原则对元素进行排序。

LinkedBlockingQueue:一个基于链表结构的阻塞队列,此队列按FIFO (先进先出) 排序元素,吞吐量通常要高于ArrayBlockingQueue。静态工厂方法Executors.newFixedThreadPool()使用了这个队列。

SynchronousQueue:一个不存储元素的阻塞队列。每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于LinkedBlockingQueue,静态工厂方法Executors.newCachedThreadPool使用了这个队列。

PriorityBlockingQueue:一个具有优先级的无限阻塞队列。

maximumPoolSize(线程池最大大小):线程池允许创建的最大线程数。如果队列满了,并且已创建的线程数小于最大线程数,则线程池会再创建新的线程执行任务。值得注意的是如果使用了无界的任务队列这个参数就没什么效果。

ThreadFactory:用于设置创建线程的工厂,可以通过线程工厂给每个创建出来的线程设置更有意义的名字。

RejectedExecutionHandler(饱和策略):当队列和线程池都满了,说明线程池处于饱和状态,那么必须采取一种策略处理提交的新任务。这个策略默认情况下是AbortPolicy,表示无法处理新任务时抛出异常。以下是JDK1.5提供的四种策略。
    # AbortPolicy:直接抛出异常。
    # CallerRunsPolicy:只用调用者所在线程来运行任务。
    # DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。
    # DiscardPolicy:不处理,丢弃掉。
当然也可以根据应用场景需要来实现RejectedExecutionHandler接口自定义策略。如记录日志或持久化不能处理的任务。

keepAliveTime(线程活动保持时间):线程池的工作线程空闲后,保持存活的时间。所以如果任务很多,并且每个任务执行的时间比较短,可以调大这个时间,提高线程的利用率。

TimeUnit(线程活动保持时间的单位):可选的单位有天(DAYS),小时(HOURS),分钟(MINUTES),毫秒(MILLISECONDS),微秒(MICROSECONDS, 千分之一毫秒)和毫微秒(NANOSECONDS, 千分之一微秒)。

用Executors静态工厂方法创建的线程池类型:

a) newFixedThreadPool:创建一个定长的线程池。达到最大线程数后,线程数不再增长。如果一个线程由于非预期Exception而结束,线程池会补充一个新的线程。

b) newCachedThreadPool:创建一个可缓存的线程池。当池长度超过处理需求时,可以回收空闲的线程。

c) newSingleThreadPool:创建一个单线程executor。

d) newScheduledThreadPool:创建一个定长的线程池,而且支持定时的以及周期性的任务执行。类似于Timer。但是,Timer是基于绝对时间,对系统时钟的改变是敏感的,而ScheduledThreadPoolExecutor只支持相对时间。
     1) Timer是创建唯一的线程来执行所有的timer任务。如果一个任务超时了,会导致其他的TimerTask时间准确性出问题。
     2)如果TimerTask抛出uncheck 异常,Timer将会产生无法预料的行为。因此,ScheduledThreadPoolExecutor可以完全代替Timer。

合理的配置线程池

要想合理的配置线程池,就必须首先分析任务特性,可以从以下几个角度来进行分析:

任务的性质:CPU密集型任务,IO密集型任务和混合型任务。
任务的优先级:高,中和低。
任务的执行时间:长,中和短。
任务的依赖性:是否依赖其他系统资源,如数据库连接。

任务性质不同的任务可以用不同规模的线程池分开处理。CPU密集型任务配置尽可能小的线程,如配置Ncpu+1个线程的线程池。IO密集型任务则由于线程并不是一直在执行任务,则配置尽可能多的线程,如2*Ncpu。混合型的任务,如果可以拆分,则将其拆分成一个CPU密集型任务和一个IO密集型任务,只要这两个任务执行的时间相差不是太大,那么分解后执行的吞吐率要高于串行执行的吞吐率,如果这两个任务执行时间相差太大,则没必要进行分解。我们可以通过Runtime.getRuntime().availableProcessors()方法获得当前设备的CPU个数。

优先级不同的任务可以使用优先级队列PriorityBlockingQueue来处理。它可以让优先级高的任务先得到执行,需要注意的是如果一直有优先级高的任务提交到队列里,那么优先级低的任务可能永远不能执行。

执行时间不同的任务可以交给不同规模的线程池来处理,或者也可以使用优先级队列,让执行时间短的任务先执行。

依赖数据库连接池的任务,因为线程提交SQL后需要等待数据库返回结果,如果等待的时间越长CPU空闲时间就越长,那么线程数应该设置越大,这样才能更好的利用CPU。

建议使用有界队列,有界队列能增加系统的稳定性和预警能力,可以根据需要设大一点,比如几千。有一次我们组使用的后台任务线程池的队列和线程池全满了,不断的抛出抛弃任务的异常,通过排查发现是数据库出现了问题,导致执行SQL变得非常缓慢,因为后台任务线程池里的任务全是需要向数据库查询和插入数据的,所以导致线程池里的工作线程全部阻塞住,任务积压在线程池里。如果当时我们设置成无界队列,线程池的队列就会越来越多,有可能会撑满内存,导致整个系统不可用,而不只是后台任务出现问题。当然我们的系统所有的任务是用的单独的服务器部署的,而我们使用不同规模的线程池跑不同类型的任务,但是出现这样问题时也会影响到其他任务。